ESSCIRC 2007 Session A3L-G1

An 11-bit 45MS/s pipelined ADC with rapid calibration of DAC errors in a multi-bit pipeline stage

Imran Ahmed, David A. Johns University of Toronto

University of Toronto Department of Electrical and Computer Engineering

Overview

- Motivations
- State of the art
- Approach of this work
 - Rapid calibration of gain and DAC errors in 1st pipeline stage
 - Design in 0.18µm CMOS
- Measurement results
- Summary

Motivations: ADC non-idealities

- Background digital calibration effects of:
 - **1.)** Capacitor mismatch
 - 2.) small DC opamp gain

Why Short calibration time?

- Long calibration time limits testing throughput
- 2^{2N} cycles for gain calibration w/statistical techniques (empirical)

[*Ray, Song, JSSC March '07*] **10**⁷ cycles for 80dB SFDR [*Siragusa, Galton, JSSC Dec '04*] **10**⁸ cycles for 90dB SFDR

- E.g. 10^7 clock cycles for calibration, 45MS/s \rightarrow 220ms to test calibration

- [Li, Moon, TCAS-II, Sept 2003], [McNeill et al, ISSCC 2005]
 Corrects opamp gain error in very short time
- We expand concept in this work to also correct for DAC errors

- Gain errors special case of DAC errors $\rightarrow \delta(i) = \delta$
- Thus Correcting DAC errors, also corrects gain errors

1st stage residues in this work

1st stage residues: with DAC errors

- ADC A used as ideal reference to measure errors of ADC B
- single DAC error measured with minimum of 2 clock cycles

ADC A: error measurement

 Calibration requires input to be sufficiently busy to excite each MSB

Digital Error IIR filter

- Use average error to minimize noise and input dependency
- µ a power of 2 for simple implementation

Calibration architecture in full

Include LMS adaptive term α to match ADC gains

Circuit top-level

ADC A

• Gain reduced from 8x to $4x \rightarrow$ larger feedback factor

5-bit Flash ADC - comparator

- Array of comparators used for 5-bit flash
- Resistor string used for Flash ADC reference voltages
- Preamp to reduce offset, minimize kickback

Testability: Process variation

0.18µm CMOS Chip Micrograph

2.1mm

- Area = 3.57 mm²
- Power = 81mW (analog core)

INL

• INL improved from +6.4/-6.1 to +1.1/-1.0 LSB

Accuracy improvement over time

- 11-bit linearity within **10**⁴ cycles (i.e. 0.22ms)
- Compare to 2²⁽¹¹⁾ = 4 x 10⁶
- Verified with different 'busy' full scale inputs

Performance summary

$f_s = 45 \text{MS/s} (f_{in} = 2.39 \text{MHz})$		
	Before calibration	After Calibration
INL (LSB)	+6.4/-6.1	+1.1/-1.0
SFDR (dB)	48.9	70
SNDR	46.9	60
Power (analog core)	81mW	
Area	3.57mm ²	
# calibration cycles	10 ⁴ cycles, (0.22ms)	

Conclusions

- Presented architecture to rapidly correct DAC and gain errors in multi-bit pipeline stage
- Measured results in 0.18µm CMOS show linearity improved by >3b within 10⁴ clock cycles
- Calibration achieved in more than two order of magnitude fewer clock cycles than prior statistical approaches

Acknowledgements

- Feedback from Professor Ken Martin, University of Toronto
- The generous funding from the National Sciences and Research Council of Canada (NSERC)
- The fabrication services of the Canadian Microelectronic Corporation (CMC)