ESSCIRC 2007 Session A3L-G4

A high bandwidth power scaleable sub-sampling 10-bit pipelined ADC with embedded sample and hold

Imran Ahmed, David A. Johns University of Toronto

University of Toronto

Department of Electrical and Computer Engineering

Overview

- Motivations
- State of the art
- Approach of this work
 - Technique to remove front-end S/H
 - Works for very high input frequencies
 - Design in 0.18µm CMOS
- Measurement results
- Summary

Motivations: Sub-sampling

Remove input mixer in IF systems

- √ Saves power
- X Significantly increases ADC input bandwidth

Power scaleable ADC for IF applications

- ADC can be used for variety of applications with minimal power
- E.g. Multi-Standard, Multirate

large input BW in pipelined ADCs

 Prior works use power hungry front-end S/H to ensure MDAC, sub-ADC inputs are the same

S/H removal: prior art

e.g. references

- [Gulati et al, JSSC Aug '06]
- [A.A. Ali et al, JSSC Aug '06]

If
$$|V_{\text{in-MDAC}} - V_{\text{in-ADC}}| < \delta \rightarrow \text{no error}$$

True if
$$|\Delta_{\text{skew}}| < \frac{1}{8\pi f_{in}}$$
 for 1.5b stage

for f_{in}=270MHz, skew < 140ps → need very careful layout to guarantee maximum skew

This work: MDAC w/embedded S/H

 No front end Sample and Hold required to guarantee sub-ADC, MDAC operate on same input

Φ_{1a} – track input

Φ_1 – sample input

Φ_2 – embedded S/H drives sub-ADC

Φ_{2D} – DAC + gain operation

Key observations

- Settling time of first pipeline stage slightly reduced
 - front-end S/H eliminated overall power still reduced
- Technique independently developed, but similar to [Li et al, CICC '06]
 - This work:
 - 4x larger input bandwidth
 - Power scaleable architecture
 - 66% increase in sampling rate

Power scalability

- described in detail in [Ahmed, Johns, JSSC Dec '05]
- scale power with sampling rate over large sampling rate range without large current variations

10b Pipelined ADC architecture

Rapid Power-on Opamp

- Opamp wake-up → gain boosters have step response
- Stable response → large PM for gain booster loop

Stability improvement: gain booster opamp

- [Baker: CMOS Circuit Design, Layout and simulation]
- Gain-booster opamp tradeoff: stability vs. slew-rate

Clock delay generator

 Require delay to be scaleable for different sampling rates scaleable sampling + validating impact of different delays

Current starved cell: delay control

- In this work bias transistor does not enter triode
 - → Delay strong function of bias current
 - → Can scale delay over wide range by scaling current

Chip micrograph

- 1.8V 0.18um CMOS
- Area = 1.21 mm²

SNDR vs f_{in} (f_s =50MS/s, 4.55MS/s)

FFT ($f_s = 50MS/s$, 4.55MS/s)

SNDR vs. t_{delay}

Power vs. sampling rate

- At 50MS/s power reduced from 35mW to 27mW compared to [Ahmed, Johns Dec '05 JSSC]
 - >20% reduction in power by removing S/H

Summary

Technology	1.8V 0.18um CMOS
Sampling rates (fs)	<164kS/s - 50MS/s
Power	<0.6mW - 27mW
SNDR	> 51.5dB for all fs
SFDR	> 60.5dB for all fs
input frequency range	0 - 267MHz
Power of [Ahmed, Johns, JSSC, 2005]	
@ 50MS/s	35mW
Power of this work @ 50MS/s	27mW

Conclusions

- Presented architecture to eliminate frontend S/H that does not rely on matching
 - Power reduction of >20% by using technique of this work

 Method to improve settling behavior of Rapid-Power-On opamps

Acknowledgements

 The generous funding from the National Sciences and Research Council of Canada (NSERC)

 The fabrication services of the Canadian Microelectronic Corporation (CMC)