ISSCC 2009 Session 9.2

A 50MS/s 9.9mW Pipelined ADC with 58dB SNDR in 0.18µm CMOS Using Capacitive Charge-Pumps

Imran Ahmed^{1,3}, Jan Mulder², David A. Johns¹

¹ University of Toronto, Toronto
² Broadcom Netherlands, Bunnik
³ now with Kapik Integration, Toronto

Overview

- Motivations
- State of the art
- Approach of this work
 - Low power capacitive charge-pump based gain
 - Differential stages without CMFB
- Measurement results
- Summary

Motivations

- Low power:
 - Increase battery life in mobile applications
 - Enable cheaper packaging in wired applications
- Simple topology
- Trade analog with digital
 - Scales better with newer technology

Typical 1.5-bit pipelined ADC stage

- Opamp needed for 2x gain \rightarrow large power consumer
- Opamp power \rightarrow gain x bandwidth

State of the art approaches

- Substitute opamp with more power efficient topologies
 - [Murmann et al, ISSCC '03]
 - [Sepke et al, ISSCC '06]
 - [Hu et al, VLSI '08]
- Limitations of prior approaches:
 - Complex topology (e.g. non-linear calibration), or
 - Single-ended/Psuedo-differential, or
 - Linearity below 8-bits

Goal of this work

- Low-power, opamp-free topology that:
 - 1. A simple topology and digital calibration scheme
 - 2. Has a differential topology
 - 3. Can achieve a linearity > 10-bits
- Proof-of-concept Pipelined ADC → 10-bit / 50MS/s
 Variety of applications from digital communication to medical imaging

Capacitive voltage-doubler based approach for gain

- Input sampled onto two capacitors in first clock phase
- C1=C2

Gain achieved by charge addition

✓ Low power → gain-bandwidth tradeoff decoupled

× CM error also doubled

Reduced active noise

- Small buffer noise → small capacitors → low power
- Cf. → in SC opamp based circuit, opamp noise directly refers to input

Architectural challenges

- 1. How to avoid amplifying common-mode errors
- 2. Impact of parasitic capacitors
- 3. Topology of unity gain buffer

Impact of common-mode errors

- Small CM offset at input can saturate backend stages
- Need differential pipeline stages

- Input sampled differentially, no need for CMFB
- V_{o+} common-mode set by common-mode of V_{DAC+} ¹³

Impact of parasitics on gain

- Linear gain error corrected with digital calibration
- Small switches minimize non-linear parasitics

Unity gain buffer – Source Follower

- NMOS S.F. has high g_m, low output common-mode
- small input capacitance $\rightarrow \sim C_{gd}$

Complete 1.5-b stage (+'ve half)

• S0 \rightarrow ensures bottom-plate sampling \rightarrow good linearity

16

• S3 \rightarrow to power-off S.F. for half the clock cycle

Pipelined Topology

Stage gain ~ 1.75x → need 12 stages for 10-bits

- Low-power, simple approach
- Offset of S/H removed by sampler of next stage

Gain error foreground calibration

assume backend ADC error free

- Set V_{in} =0, toggle DAC voltage to measure Δ
- Recursively calibrate from last stage to first

Chip micrograph

2.0 mm

- 1.8V, 0.18µm CMOS process
- 1.4 mm² \rightarrow includes test circuitry, decoupling caps. ₂₁

32,768 pt FFT (f_{in}=2.4 MHz)

Even order distortion strongly suppressed

32,768 pt FFT (f_{in}=20.7 MHz)

> 9-bit ENOB for Nyquist bandwidth

f_s=50MS/s, SNDR/SFDR vs. f_{in}

- Power: 3.9mW (active) + 6mW (clocking) = 9.9mW
- Ref. voltages (not included) \rightarrow 0.34mA

INL (before calibration)

Peak INL = +15.7/-17.9 LSB (LSB @ 10-b level)

INL (after calibration)

Peak INL = +0.7/-0.8 LSB

• Peak DNL = +1.6/-1 LSB

Peak DNL = +0.35/-0.35 LSB

Calibration robustness

- Calibration coefficients fixed, ADC output measured while varying:
 - Bias currents by +/-10%
 - Time interval as long as 1 week
- ENOB varied less than 0.05-bit
- Gain error not a strong function of bias currents, drift → may not require frequent calibration
- use background calibration to track temperature

Comparison to other 10-b ADCs

• FOM of this work = 0.3pJ/step

Summary

- Low-power gain with capacitive charge-pumps
 - Differential
 - linearity > 10bits
 - Low complexity architecture

Technology	1.8V, 0.18µm CMOS
Input signal swing	1.0V p-p
Area	1.4mm ²
Sampling rate (f _s)	50MS/s
SNDR / SFDR	58.2 dB / 66dB
ENOB	9.4 bits
Power / FOM	9.9 mW / 0.3 pJ/step

Acknowledgements

- Klaas Bult, and the entire team at Broadcom Netherlands
- Revision help from Professor K.C. Smith, University of Toronto
- Funding support from Gennum Corp, NSERC
- Fabrication support from CMC